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The paper considers the problem of calculating the statistical characteristics of a 
passive scalar dispersed by a homogeneous turbulence field. In  many turbulent shear 
flows the time-scale for the evolution of the scalar field is intrksically related to that of 
the turbulent velocity field. This is by no means always the case, however, and it is at  
this more general situation that the present work is aimed. An approximate transport 
equation for the rate of dissipation of scalar variance is proposed which, it is argued, 
must contain (at least) two sink terms one of which responds to the time scale of the 
velocity field while the other reflects that of the scalar field itself. The model has been 
applied to the limited number of homogeneous scalar flows for which data are available 
and achieves satisfactory agreement as judged by the evolution of the mean-square 
scalar variance. 

1. Introduction 
Currently there is much activity in the development of second-order turbulence 

models. This appears to be the simplest closure level in which essential turbulent flow 
characteristics, e.g. transport, pressure-interactions, dissipation and effects of external 
force fields, can be directly incorporated. In second-order modelling, a truncated 
hierarchy of moment equations is used and closure is effected by expressing the un- 
known higher-order moments in terms of lower-order quantities. Rational closure 
approximations are best developed by considering a hierarchy of increasingly complex 
flows. In  this way, the various physical features observed in turbulent flows can be 
considered individually, and thereby good representations for the higher-order terms 
associated with these phenomena may be developed. 

In  this paper, we present a second-order model which pertains to a homogeneous 
passive scalar field in decaying homogeneous turbulence without mean velocity 
gradients and spatially removed from solid boundaries. We consider both a scalar field 
without mean scalar gradients and one which contains a constant mean scalar gradient. 
These two flows contain features which are fundamental to scalar turbulence flows, 
and so our model should provide the basis for models describing more complex scalar 
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flows. The main contribution of this paper lies in the provision of a prognostic equation 
for ec = KC,, c , ~ ,  which represents half the molecular dissipation rate of scalar variance 
c2.t The equation itself is imbedded in the second-order closure scheme evolved by the 
present authors, Lumley & Newman (1977) and Launder (1976). 

A number of workers (for example Spaldhg 1971) have presented scalar closure 
models in which eC is determined directly through explicit specification of a constant 
value for the ratio of mechanical to thermal time scales, r = (?/e)/(F/ec), where E = 
wi, ui, is the dissipation rate of one half of the velocity variance, q 2  ( = Wi). This 
procedure obviously provides a simpler route than through a prognostic equation. 
There is, however, no reason to expect that the time-scale ratio r should exhibit a 
universal value in all scalar turbulent flows. Indeed, there are strong grounds for 
expecting apriori that r should vary among differing types of scalar flows, The quantity 
r expresses the ratio of local turnover times of the energy-containing velocity and 
scalar eddies; these energy-containing eddies are influenced significantly by the pro- 
duction mechanisms of the respective velocity and scalar fields. It appears reasonable 
therefore to expect that the level of r will depend on these production mechanisms, 
and hence that r might change among flows with differing influences of the production 
mechanisms. In  fact, examination of existing scalar turbulence data supports this 
premise. 

Warhaft & Lumley (1978) review the existing data concerning heatedgrid turbulence 
and present data from their studies of this type of flow. They note that the levels of r 
vary (as a unique function of the relative positions of the peaks of the velocity and 
scalar energy spectra) from approximately 0.6 to 2.4 in the various grid experiments. 
Bdguier, Dekeyser & Launder (1978) examined the data from a number of studies 
of thermal turbulence in thin shear flows (including boundary layer, pipe and wake 
flows) in which the production rates of both the velocity and scalar fields were roughly 
equal to the respective dissipation rates. They found the level of r to be approximately 
2.0 in all of the flows they investigated.$ Finally, Launder (19754 shows that a value 
of r of 0.7-0-8 is needed to predict the strong rise of turbulent Prandtl number with 
Richardson number exhibited by Webster’s (1964) data in a density stratified shear 
flow. The variations in r displayed by these data preclude accurate prediction of these 
flows with a model in which ec is simply determined by way of a fixed value of r,  a 
conclusion that has provided the impetus for the present work. It is found that all the 
available homogeneous scalar turbulence data are well simulated with a closure includ- 
ing the proposed prognostic equation for ec. 

The strategy pursued in devising the ec equation is in most respects an extrapolation 
of that adopted in Lumley & Newman (1977) and Launder (1976); the closure is 
developed in 9 3. However, before considering that problem in detail, we first examine, 
in $2, the equilibrium behaviour of the time-scale ratio re in homogeneous scalar 
turbulence without mean scalar gradient. 

t What really interests us is the rate at which scalar variance is fed into the low wavenumber 
end of the spectrum to begin its journey through the cascade to dissipation scales. In  an equi- 
librium situation this is equal to the dissipation, and we will call it ‘dissipation’, but of course it is 
a quantity determined by the parameters of the energy-containing range; the fact that it can be 
written in terms of fluctuating velocity gradients is irrelevant. It might better be called spectral 
flux of scalar variance. See Tennekes & Lumley (1973). 

2 Note that the time-scale ratio T in this paper is the reciprocal of that adopted by BBguier et al. 
(1978) and denoted by R. 
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2. Equilibrium decay levels of the time-scale ratio 
We envisage an equilibrium decay regime to be a region of decaying scalar turbulence 

which is not significantly influenced by initial or boundary conditions. From a physical 
viewpoint, it  seems plausible that, for such a flow with nearly isotropic scalar and 
velocity fields and with moderate to large turbulent Reynolds and PBclet numbers, the 
value of r would be close to unity since, presumably, the energetic large-scale velocity 
eddies are those which most profoundly affect the energetic large-scale scalar eddies, 
distorting them on the scale of the large-scale velocity eddies. This large-scale distortion 
of the scalar field could be expected to force th6 scale size of the energetic scalar eddies 
to keep pace with that of the evolving energetic velocity eddies. In that event, the 
ratio re, viewed as the ratio of time-scales relevant to the large eddies, should be fairly 
close to unity. 

Let us compare this conjectured development with the levels of r found in a turbulent 
flow downstream from a heated grid where the mean temperature and velocity are 
uniform. In  most of the heated grid studies (the only exception being that of Lin & Lin 
1973) the levels of temperature fluctuations were kept sufficiently small for buoyancy 
effects to be negligible; the scalar contaminant, temperature, therefore behaved 
passively in these flows. The levels of anisotropy of the velocity fields, though not 
fully documented experimentally, were presumably small. On the other hand, values 
of the streamwise heat-flux correlation coefficients ranging from approximately 0 to 0.1 
were measured in the various heated grid flows in which heat-flux measurements were 
performed, indicating the presence of ‘anisotropy’ in the scalar field in some of the 
flows. The heat-flux data are dealt with in detail in Warhaft & Lurnley (1978), and we 
shall consider the heat-flulcisiue briefly in a later section. We mention here only that, 
at least qualitatively, the behaviour of the time-scale ratio in any of the documented 
grid turbulence flows appears to have been unaffected by the level of the heat-flux 
correlation coefficient in the flow. The data for the scalar and velocity variances for all 
the flows may be adequately represented with power-law expressions? a t-n, 3 cc t-m; 
the time-scale ratio is obtained from the ratio of the exponents, r = m/n. Examination 
of the data reveals that in each documented grid flow the time-scale ratio remained at a 
constant level, within the accuracy of the data, over the entire observed streamwise 
extent of the flow (downstream of the point at which homogeneity was achieved). 
However, the level of r varied among these flows from approximately 0.6 to 2.4. 
Warhaft & Lumley (1978) present strong evidence from their measurements that the 
level of r in a heated grid turbulent flow may well be a unique function of the difference 
kv - kc, where kv and kc are the wave numbers corresponding to the peaks of the velocity 
and scalar energy spectra respectively. In decaying heated grid turbulence, the velocity 
and temperature spectra peak a t  successively lower wave numbers as the flow evolves 
downstream (Yeh & Van Atta 1973), because the smaller eddies in the flow decay more 
rapidly than the larger ones. However, Warhaft & Lumley (1978) found that the 
difference kv - kc was approximately invariant with respect to downstream position in 
each of the flows they examined, and they suggest that the constancy of the level of r 
in a heated grid flow may be attributable to this observation. 

The uniformity of r with respect to downstream position in heated grid turbulence 
does not conform to our conjectured picture of equilibrium decay. It is possible, how- 
ever, that the high-Reynolds-number decay of thermal grid turbulence is not truly 
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representative of an equilibrium flow. Indeed, the existing data suggest that the level 
of r in heated grid turbulence may well be determined solely by the initial conditions 
(energy input scales) governing the flow, i.e. that the initial period of decay in thermal 
turbulence is not an equilibrium decay regime which is independent of the initial and 
boundary conditions. It is possible, of course, that cumulative large-scale velocity 
field distortions of the scalar field over a sufficiently long streamwise distance could 
eventually alter the spectral distribution of scalar energy to a form compatible with 
equilibrium decay with the velocity field. Some of the data, however, extend one 
turbulence decay time downstream of the grid (where we define the turbulence decay 
time r by d r  = (el?) dt,  where t is real time); from what is known of spectral dynamics 
this should be long enough for any tendency towards an equilibrium decay to become 
apparent. Further studies of thermal grid turbulence (at larger Reynolds numbers) 
with longer tunnel sections might help to resolve these matters. 

We may further compare the notion of equilibrium decay with existing theoretical 
analyses of the decay of concomitant isotropic scalar and velocity fields which provide 
input regarding re. In a recent investigation, Newman & Herring (1979) applied the 
Test Field Model (Kraichnan 1971) to the study of an isotropic passive scalar in an 
isotropic velocity field. The Test Field Model simulations of scalar turbulence per- 
formed in this study extend over roughly 1.5 turbulence decay times and exhibit 
approximate self-preservation of the velocity and scalar energy dissipation and transfer 
spectra. Model predictions for scalar and velocity dissipation spectra for large turbulent 
Reynolds and PBclet numbers show good agreement with the atmospheric data of 
Champagne et al. ( 1  977), after intrinsic model scale factors (which regulate the build-up 
of triple moments) were fitted by requiring agreement between predicted and empirical 
velocity and scalar energy spectra in the inertial wavenumber range. Model predictions 
of self-preserving scalar and kinetic energy, dissipation and transfer spectra show 
moderate agreement with the heated grid turbulence data of Yeh & Van Atta (1973). 
Newman & Herring (1979) also presented the temporal evolution of the time-scale 
ratio and of the normalized decay rates $ = iq2/e2 and = icc/e2. In  all the simula- 
tions the self-preserving state was one in which and 3 underwent asymptotically a 
power-law decay with a decay exponent of nearly unity. Consequently, the time-scale 
ratio in each of the simulations approached a value of about unity and both $ and $c 
asymptoted to levels approximately equal to 4.0. This asymptotic state is consistent 
with our physical picture of an equilibrium decay flow. We note (cf. Lumley & Newman 
1977) that the level of $ in nearly isotropic turbulence varies as a function of turbulence 
Reynolds number B, defined below, but the dependence is weak and, in fact, the Test 
Field Model value of $ - 4.0 is within 11 % of the values of $ appropriate for grid 
turbulence over the observed range of R, 2 100. Moreover, in the self-preserving state 
in each of the simulations, the velocity and scalar energy spectra peak at successively 
lower wavenumbers as time increases, and the velocity spectrum peaks at  a wave- 
number approximately twice that of the scalar spectrum. This spectral-peak difference 
is in fair agreement with the values found in heated grid data for the cases where r = 1 
(Yeh & Van Atta 1973; Warhaft & Lumley 1978). All the above behaviours are inde- 
pendent of Reynolds and Prandtl (Schmidt) numbers over the range covered by the 
simulations, thus indicating an insensitivity of the model to changes in the levels of the 
molecular diffusivities. Newman & Herring (1979) note that this independence, if 
observed, would probably be exhibited in real turbulence only for cases of moderate to 
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lnrgc Reynolds and PBclet numbers (where E and E,  would be approximately inde- 
pendent of the levels of the diffusivities-see Tennekes & Lumley 1973). 

We infer from the above that the scalar Test Field Model simulations provide fairly 
good agreement with existing experimental data of grid turbulence provided the initial 
wlue of r is near unity. For r + 1,  however, the data show that $c and r remain a t  their 
initial levels over evolutionary periods up to A7 M 1 , while the simulations predict an 
asymptotic approach from the initial levels to $c M 4.0, r = 1.0 within this period. As 
Newinnn & Herring (1979) remark, the Test Field simulations start from specified 
initinl spectral forms with zero transfer spectra, whereas the grid turbulence fields 
evoke from coalescing heated wakes and hence exhibit significantly different initial 
energy and transfer spectra. Possibly the experimental evolution of r and $c might be 
better reproduced by the simulations if the initial spectral forms for the latter could be 
set to agree better with the data spectra. Such an investigation would entail alteration 
of the existing theory prescriptions, but might well serve to shed some light on the 
issiies. 

We note in passing the results of other analyses of decaying isotropic scalar turbu- 
lence that are based on similarity assumptions; the various similarity theories are 
discussed in detail by Hinze (1975) and Monin & Yaglom (1975). Generally, these 
prescribe either partial or complete self preservation of the scalar and velocity spectra 
consistent with certain integral invariants for the flow (e.g. Loitsianskii 1939; Corrsin 
1951; Saffman 1967). The imposed conditions serve to determine decay laws for 2 
and 5 fsom which values for r are readily determined. Levels of r from the various 
similarity theories are scattered about a value of 1.0 ranging from about 0.5 to 1.5. The 
validity of the assumptions in these descriptions is not substantiated, however, and SO 

me shall not employ their results in our work. 
Finally, we consider two exact results for scalar turbulence decay which might be 

viewed as special cases of equilibrium decay of homogeneous scalar turbulence without 
mean scalar and velocity gradients. The first is the final period of decay for small 
Reynolds and PBclet numbers. For the final period the non-linear terms in the scalar 
and velocity equations of motion may be neglected, and the resulting equations solved 
exactly (Corrsin 1951). The solutions for and 2 are power-law decays with decay 
exponents of $ and + respectively. This gives r = t as the appropriate value for the 
final period of decay. This value holds for all levels of anisotropy of the velocity and 
scalar fields. 

The second case is that of one-dimensional scalar turbulence. The velocity field may 
be solved exactly for this case (Lumley & Newman 1977), because the nonlinear terms 
in the velocity equation of motion vanish. The solution for ?is again a power law with 
a decay exponent of 2. On the other hand, the solution for 3 for one-dimensional 
turbulence is not easily obtained in general, because the convective term containing 
the non-zero fluctuating velocity component does not vanish. However, this nonlinear 
term does vanish for the case of one-dimensional turbulence in which the fluctuating 
scalar field is independent of position in the direction of the fluctuating velocity com- 
ponent. The scalar transport equation for this flow has the same form as that for the 
final period of decay and hence yields a power law solution for c3; however, the decay 
exponent is now unity, instead of 8, owing to the one-dimensional nature of the 
spectrum. Thus, for this latter case, the value of the time-scale ratio is 0.5. Lumley & 
Newman (1977) argue that for this flow their solution for the decay of 2 is, in fact, a 
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singular-limit solution which is achieved only for one-dimensional turbulence, and that 
the final-period decay solution for 3 is appropriate for all quasi-one-dimensional flows 
right up to the point of one-dimensionality. They therefore adopted the value of the 
final-period decay exponent for as the value for the limit of one-dimensional turbu- 
lence. If we proceed in an analogous fashion with the scalar decay problem (although 
there is no strict analogy here) we obtain r = 0.6 (the final-period value) for the case of 
one-dimensional scalar turbulence. 

3. A model for the scalar dissipation equation in homogeneous turbulence 
3.1. Preliminaries 

The exact transport equations describing the development of the intensity of scalar 
fluctuations in a homogeneous turbulent flow without mean velocity may be written 
(Lumley 1972; Bradshaw 1976) as 

- 
dUT/dt  = - w c ,  j - b ~ C 2 - ( K + V ) ~ - ~ / p ,  (3.3) 

(3.5) 

In the above set K and v represent the thermal diffusivity and kinematic viscosity, p 
denotes the instantaneous fluctuation in pressure about the mean value, p represents 
the fluid density while bi is a component of the buoyancy vector whose magnitude is 
q / c  (a being the dimensionless volumetric expansion coefficient and g the gravitational 
acceleration). The decomposition of the Reynolds stress equation (3 .4)  is that proposed 
in Lumley & Newman (1977); the form given serves to separate the diagonal and off- 
diagonal elements of the dissipation tensor vui, k uj, k ,  which is observed to become 
increasingly isotropic with increasing Reynolds number (Batchelor 1953). The mean 
scalar gradient C, is, by virtue of the requirement of homogeneity, understood to be 
uniform over the flow field. 

In  what follows the main aim is to devise a rational closure of equation (3.2) that 
faithfully imitates the behaviour of cc. The turbulent velocity field is considered to be 
adequately described by the recent proposals of Lumley & Newman (1977) for closing 
(3.4) and (3.5) for cases in which buoyant influences are negligible. These equations are 

d-/dt = - ( / 3 j ~ + ~ + p i ) - ( 2 v U ( ,  k U j ,  k -  & d i j + m / p + m / / ~ )  - #&ij, (3 .4)  

&/dt = -2vui,kUi,jUj,k-2v2ui,  jkU.& j k - 2 v p i u ( , j c j .  

- represented as: 
dui uj/at = - €+ij - t6&,, 

d€/dt  = -$€2/& 

where 

$ = 9 + 0.98 exp ( - 2-83R,-t) { 1 - 0.337 In (1  + 27*5/II)}  

g(x) = 22 + exp ( - 7 . 7 7 R r t )  (0-633(4 sin 2nx - sin 4nx + sin 6nx) 

+ 1~70R~~(1~26sin2nx-0~112sin4nx)}. 
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The quantities b(a) and xis) are respectively the eigenvalues and eigenvectors of b,, 
where btj = u i p -  #ai, is a tensor measure of the anisotropy of the velocity field 
and I1 = b, bij; R, = (?)*/9ev is the turbulence Reynolds number. 

For the scalar-flux equations, we shall also, with certain exceptions, adopt closures 
that have been proposed and utilized elsewhere. In  0 3.2 we consider the closure of the 
ec equation for the simplest case in which mean temperature gradients and buoyant 
effects are absent (and for which experimental data are more plentiful). Subsequently, 
the effects produced by these two additional processes are considered. 

3.2. Flows without mean scalar gradient8 

The equations for the scalar variance and (half) its dissipation rate for a homogeneous 
scalar turbulent flow with scalar fluxes but without mean scalar gradients or buoyancy 
effects are given by 

a q a t  = -2€,, (3.8) 

By analogy with (3.7), we rewrite (3.9) as 

d€,/dt = - $-,€:/c2, (3.10) 

thereby shifting attention to the dimensionless decay rate II., for which we must develop 
a model. We shall employ the invariant modelling technique after Lumley (1970a). 

We observe that we could determine fi, uniquely from equations (3.8), and the 
corresponding velocity field and scalar flux equations given above as a functional 

Il.,(uGq. z, uic, 8, E,, K ,  4, (3.11) 

(where the functional dependence may range over the entire flow history) if we knew 
the time histories of the arguments. We have included the scalar flux -in (3.1 1)  with 
the view that the presence of scalar fluxes in a homogeneous scalar flow might affect the 
evolution of ec. Next, if we presume that changes in the mean flow are slow relative 
to turbulence memory times (as discussed in Lumley & Newman 1977) the functional 
(3.11) may be evaluated simply as a function of the included arguments at the current 
time. We may now use dimensional analysis to group the arguments of II.,. Assuming 
K v, 1G., becomes a dimensionless function of 13 independent quantities which contain 
the dimensions of temperature, time and length, and we may therefore form 10 
independent dimensionless groups. If we choose the anisotropy tensor bij (which has 
5 independent components since its trace vanishes), the time-scale ratio, the turbulence 
Reynolds number and a scalar-flux ' anisotropy ' tensor defined as 

(3.12) 

and then require invariance of II., under general coordinate transformations (see 
Lumley 1970b), we may represent $, as a function of tensor invariants. Retention of 
invariants to second order in anisotropy of the velocity and scalar fields yields 

(3.13) 

where 11, =fib. Here we have excluded the higher-order invariant quantities on the 
grounds that: (i) we shall be dealing with, at most, only moderately anisotropic 
turbulence (in which the higher-order invariants should exert only a weak effect) and 
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(ii) there are insufficient sets of experimental data to determine the functional depend- 
ence of $, upon the higher-order invariants even if the desirability of their inclusion 
were acknowledged. 

The form of the function $, must now be determined through consideration of 
existing data and theoretical results concerning decay of homogeneous scalar turbu- 
lence. We consider the influence of 11, upon $, first. The only studies of the decay of a 
homogeneous scalar field in which scalar fluxes as well as variances were measured are 
those of Mills et al. (1958), Yeh & Van Atta (1973) and Warhaft & Lumley (1978). Now, 
it is easily deducible from (3.8) and (3.10) that if, locally, the scalar variance is decaying 
at  a rate proportional to t-a then the quantity $,is given by 2( 1 + a-l) independent of a 
possible virtual origin for the local scalar fluctuations. There is thus a readily apparent 
connection between the rate of decay of scalar variance and $,. The levels of scalar-flux 
anisotropies for the above three studies, however, show apparently no connection with 
the corresponding values of @,. Consequently, we have adopted the view that the 
parameter 11, must be excluded from (3.13), an important simplification. 

We must now develop a form for $, = $c(II, r ,  RJ. Unfortunately, the ranges of the 
values of the arguments I1 and R, observed in the homogeneous scalar turbulence data 
are fairly limited. Therefore, we shall approach the problem by directly modelling the 
behaviour of r from measurements and theory. We note here that the presence of the 
time-scale ratio in the argument set for $, provides a means of coupling the scalar and 
velocity fields in a manner which ensures compatible evolution (e.g. non-divergent 
growth of the scalar and velocity time scales, which are defined respectively as T, = 

c2/ec, = ? / E )  of concomitant scalar and velocity fields in scalar decay simulations. 
Now, in order to develop a form for $,, we have found it convenient to presume that 

deviations of r from its equilibrium value re are small. This presumption, like many 
others in second-order modelling, is often at  variance with observations; however, it  
allows us to obtain an expression for $, which provides for satisfactory simulation of 
the evolution of the scalar field and thus of r itself, in decaying scalar turbulence. 
Assuming that deviations are small, we may expand $, in a Taylor series in r-1-r;l 
and truncate at  the first order. If we then absorb the term r;' into the ' constant' term, 

- 

we obtain 
$c = Br-1+ D, (3.14) 

where B and D are functions of 11, re and R, in general. With this linear expansion, the 
scalar dissipationequation (3.7) now becomes 

(3.15) 

We observe that realizability of E, (Schumann 1977) is automatically guaranteed with 
this form for the E, equation. We may employ equation (3.15) together with those for 
c2, q2 and E to form an equation for the time scale ratio in terms of the decay time scale r 
defined previously. We obtain 

- _  

- ($ - B  - 2) + r(2 - D). 1 dr 
r dr  
-- - (3.16) 

We may now parameterize the coefficient functions B and D in (3.16) in a manner 
which ensures that r behaves properly in simulations. We first summarize our views 



The behaviour of homogenous scalar turbulence 225 

regarding the behaviour of r in decaying scalar turbulence which derive from the 
discussions in Q 2 above. 

We shall adopt the view that a decaying homogeneous scalar turbulent flow will 
exhibit equilibrium decay for all time after cumulative distorting effects of the velocity 
field redistribute the initial spectral distribution of scalar energy into a distribution 
compatible with equilibrium decay with the velocity field. We envisage equilibrium 
decay flow to exhibit levels of r = 1 a t  moderate and large values of R, and small levels 
of I1 (as indicated by the Test Field Model simulations). Further, we shall adopt the 
final period value r = 0.6 as the appropriate equilibrium value for decay at very low 
levels of R, at all levels of I1 (0 < I1 < 8 ) .  In  addition, we shall choose the final period 
value for r for the equilibrium decay case of one-dimensional turbulence with an 
arbitrary spatial distribution of the scalar field. It is convenient for our modelling 
purposes to represent this equilibrium decay behaviour in a parameterized form for the 
equilibrium time-scale ratio re. Since we lack further information regarding re, the 
simplest approach appears to be that of adopting the forms of the Rl and I1 expressions 
in the parameterization for $ presented by Lumley 6 Newman (1977).  With these 
expressions we obtain 

(3.17) 

which yields our adopted values for re for the three limiting cases of turbulence con- 
sidered here. Finally, we adopt the view that the approach to equilibrium decay from 
arbitrary initial conditions is very slow, as exhibited in the heated grid data. 

Since re represents an ‘asymptotic’ level for r for decaying scalar turbulence, we 
require that 

drldr  = 0 at r = re, (3.18)  
which implies that 

$ = B + 2 + r e ( 0 - 2 ) .  (3.19) 

Using this result, we may rewrite (3.16) as 

r, = 0.6 + 0.4 exp ( - 2 .83Rr t )  {l-  0.337 In (1 + 27.5 11)) 

1 dr -- = @ - r e )  ( 2 - 0 ) .  r dr (3.20)  

In a strict sense, we should view r as a function of 7,  I1 and Rl and regard the derivative 
in (3.18) as a partial derivative with respect to 7 with I1 and R, (and hence re) held at 
fixed values. However, we have found the condition (3.18) as stated both convenient 
and adequate for our modelling purposes. If we now presume that, at least locally, r 
should approach re monotonically, then (3.20) requires that D 2 2 for all I1 and R,. In  
addition, if we require that B 2 0, which ensures that both terms in the E,  equation will 
act to diminish E,  in homogeneous decaying scalar flows, then with (2.19) we find that 
D < 9. Thus D lies in the fairly narrow band 2 < D < y. 

It remains to determine a form for 0. We note from (3.20) that we may adjust the 
rate of evolution of r through our specification of D. Unfortunately, the existing nearly 
isotropic heated grid data are insufficient to determine the influence of 11, re or Rl on the 
evolution rate of r. Certainly it seems possible that the rate of change of r could vary 
with these parameters, but further experiments are needed to confirm this. The most 
that can be inferred from the data is that the rate of evolution of r is slow. Lacking 
further information we have chosen simply to specify a constant value for D which is 
slightly in excess of 2 so that r will display a slow approach to its equilibrium value. In 
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FIGURE 1.  Decay of mean-square temperature variance in grid turbulence. Symbols, experiment 
of Warhaft & Lumley (1978) ; lines, prediction with present model. 
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FIGURE 2. Decay of streamwise velocity fluctuations in grid turbulence. ., Warhaft & Lumley 
(1978) ; A, Alexopoulos & Keffer (1971) ; - present predictions. 

fact D was specified as 2.02 so that, for the largest of the measured levels of r in &rid 
turbulence, 5 yo of the excess of r above its equilibrium level disappeared after a time 
interval AT of unity. (The choice of 5 % was arbitrary but produced results within the 
data scatter.) The functional variation of B is now fixed through equation (3.19). We 
note that B varies from 1.76 to 0.79 as R, and I1 range over their allowed values. For 
moderate to large levels of R, and small to moderate levels of 11, B takes values from 
about 1.4 to 1.76, so that, for this fairly general case, the two terms in the ec equation 
(i.e. those with coefficients B and D) carry about equal weight provided r is of 
order unity. The variability of B with R, and I1 ensures the desired behaviour of r in 
simulations. 
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Corrsin (1959) ; line, present predictions. 
FIGURE 3. Decay of root-mean-square temperature variance. Symbols, experiments of Mills c% 

The ability of the above model to simulate the behaviour of heated grid turbulence 
may be assessed from figures 1-3. In these figures the points represent data values while 
the continuous lines represent model predictions. (Starting values of c and cc in the 
predictions were chosen to give the correct initial slope to the experimental curves.of 
7 - and 2.) Figure 1 provides a comparison of the calculated and measured decay of 
c2/C2 for tests reported by Warhaft & Lumley (1978). These measurements cover a 
greater range of downstream evolution than alternative data. In  all cases good agree- 
ment between the experimental and predicted values is obtained. For completeness the 
corresponding measurements and prediction of the decay of the streamwise velocity 
fluctuations are shown in figure 2; again satisfactory agreement is obtained. Finally, 
in figure 3 we present the data and prediction of the decay of (?)* for the flow investi- 
gated by Mills & Corrsin (1959). This flow is of particular interest because it is the only 
heated grid flow in which the decay begins with a strongly anisotropic velocity field 
(the prediction of the decaying velocity field is given by Lumley & Newman, 1977 and 
so is omitted here). We observe from the figure that the temperature decay for this flow 
is predicted within the experimental scatter. 

3.3. Flows with a mean scalar gradient 
In  this section the range of applicability of the ccequation is extended to include homo- 
geneous flows with a constant mean scalar gradient. The exact equation set describing 
this situation is (3.1-3.5). Buoyancy terms in the scalar flux and Reynolds stress 
equations will be retained here, because for the experiment to be considered (that of 
Alexopoulos & Keffer 1971) these terms, while relatively small, are not entirely 
negligible. It is convenient to write these equations in parameterized form as 

duii/dt = +(bf -c,,uiu,-$i2J (3.21) 

dui i /d t  = +q5~j-gss.~-(/95B,u,++s,,c), (3.22) 
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where $4 and #!& represent closure models for the pressure gradient-velocity and 
pressure gradient-scalar correlations augmented by viscous terms which vanish a t  
high Reynolds and PBclet numbers. The forms adopted here are 

(3.23) 

(3.24) 

The terms containing the buoyancy vector represent the effects of gravity on the 
fluctuating pressure field, the forms given being exact in the case of isotropic turbu- 
lence (Lumley 1975; Launder 1975 b) .  The first term in $7 is thereturn-to-isotropy part 
of the pressure gradient-scalar correlation. The form proposed here has been employed 
in recent studies by Zeman & Lumley (1976) and by Launder (1976). We have chosen 
a value of 6.6 for the constant G which (as described below) provides the best agreement 
with the data of Alexopoulos & Keffer (1971). Our value differs by no more than 12 % 
from the corresponding values used by Zeman & Lumley ( 1976) and by Launder (1 976) 
to predict heat transport in the presence of substantial mean shear and substantial 
anisotropy of the fluctuating velocity field. The fairly uniform levels of G obtained in 
these three studies encourage the view that a constant value for B may be usefully 
adopted to predict a significant range of flows. 

We may proceed to develop a closure for the ec equation in an analogous fashion to 
that of $3.2. If we apply the invariant modelling technique to the cc equation in the set 
(3.1-3.5) then we may write 

ic = - $h$€e,/3, (3.25) 

where, in general, @ may be represented as an invariant function of the tensor in- 
variants introduced in $3.2 plus additional invariants formed with the buoyancy vec- 
tor and the mean scalar gradient vector. Unfortunately, there are many more arguments 
of $5 than there are documented flows with which to evaluate their importance. In  
fact, we have only the measurements of Alexopoulos & Keffer (1971) with which to 
determine the influence of a mean scalar gradient on the evolution of cC in homogeneous 
scalar turbulence. In  this experiment, a virtually linear cross-stream temperature 
gradient in a homogeneous decaying turbulent velocity field (with moderate R, and 
low I1 values) was established by means of a selectively heated grid.? To model this 
type of flow we must include a term (or terms) in our representation for $5 which pro- 
vide for production of cc. In this manner, we may ensure that ec will keep pace with 3 
(which will be fed by gradient production). On the other hand, the low levels of I1 in 
the data of Alexopoulus & Keffer (1971) preclude an accurate determination of the 
possible influence of anisotropy in a closure for 9;. Consequently, we shall exclude all 
of the invariants in the argument list of &? which are tensor products of bi,with the 
scalar field vectors. Moreover, we exclude buoyancy effects in our closure for the cc 
equation since the existing data do not warrant their inclusion. If terms up to second 
order in the remaining arguments of @! are retained, we obtain 

+! = ~ ( 1 1 ,  r ,  Rl, ti ti, ti&), (3.26) 

t Wiskind (1962) had made an earlier study of this flow tholigh his results are less romplate 
and show more scatter than the Alexopoulos-Keffer data. 
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where ti is the dimensionless meanscalargradient C,  t (p2) i /ec .  We shall adopt a form for 
$! through consideration of these arguments. The parameter 11, has been omitted 
since, as noted in the previous section, decaying scalar grid turbulence shows no sensi- 
tivity to this quantity. 

The two dimensionless parameters f ti and 4 fi could both be utilized in a closure for 
the ec equation to provide for production of ec in simulations of flows with mean scalar 
gradients. On the other hand, these two parameters vary in a closely similar way across 
many free shear flows, since the effective diffusivity is often nearly uniform a t  any 
section. It would therefore be gratuitous to retain both terms - a t  least until further 
experimental data are obtained. We retain the term ti fi which represents (the negative 
of) the ratio of the production to dissipation rates of 3. 

We have no other data with which to guide our modelling of $:; however, we may 
consider the results of two analytical calculations which pertain to homogeneous scalar 
turbulence with an imposed constant mean scalar gradient. The first result concerns 
the final period of decay at  small Reynolds and P6clet numbers. The equation of 
motion for the fluctuating scalar field contains two nonlinear terms for this type of 
flow: c,  uj and C, uj. However, for the final period the dissipation length scale is com- 
parable to the integral length scale, and the ratio of these two scales is invariant with 
time. Consequently, the two non-linear terms should be of comparable magnitude 
during the final period, and thus may both be neglected in the scalar field equation. 
The solution for swi l l  thus be identical to the final period case without a mean scalar 
gradient considered in 5 2, and therefore the time-scale ratio will again have the value 
3/5 for all levels of anisotropy of the velocity and scalar fields. 

The second result pertains to one-dimensional scalar turbulence with an imposed 
constant mean scalar gradient which is aligned in the direction of the fluctuating 
velocity component. The scalar field equation of motion for this type of turbulence is 
non-linear in general; however, the equation is linear in the fluctuating scalar and 
velocity variables for the case in which the fluctuating scalar field is independent of 
position in the direction of the fluctuating velocity. We may therefore readily obtain a 
closed form solution for 2 and ec for this latter case. We find that F/ec = t (as is also 
true for F/e in this flow) so that the time-scale ratio is equal to unityin this case. More- 
over, if (as in $2) we regard this case of one-dimensional turbulence as a singular limit, 
this final period solution will be valid at  all values of Reynolds number. 

It now remains to specify a form for $$ which is consistent with our rather limited 
knowledge of the behaviour of ec. The simplest satisfactory representation for $! 
appears to be to add a ‘production ’ term to the homogeneous scalar decay closure 

$@ = $, - E4 fi, (3.27) 

(where E is a constant) which upon substitution into (3.25) yields the following dissi- 
pation equation: 

(3.28) 

We note that the final term in (3.28) retains the realizability property exhibited by 
our homogeneous scalar decay model. A value of - 1.955 has been chosen for E (with 
G = 6.6) by minimizing the mean-square error between measurements and predicted 
values (using equations (3.28), (3.21), (3.7) and (3.21)-(3.24)) of the Alexopoulos & 
Keffer (1971) flow, 
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FIGURE 4. Mean-square temperature variance in grid turbulence with linear cross-stream varia- 
tion in temperature. Symbols, experiment of Alexopoulos & Keffer (1971) ; - present predic- 
tion, E = -2.0; - - - - - present prediction, E = - 1.955. 
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FIQURE 5. Development of cross-stream heat flux in grid turbulence with linear cross-stream 
variation in temperature. Symbols, experiment of Alexopoulos & Keffer (1971); line, present 
prediction. 

We may obtain further perspective on the quantity E by considering the evolution 
of r implied by our model equations. By an extension of the procedure employed in 
section (3.2) we may form an equation for the time scale ratio from our scalar-gradient 
model equations as 

-- = ( $ - B -  2) + r  [ ( 2 - 0 )  
1 dr 
r dr 

(3.29) 

where P, = -U,C, is the rate of production of 2. We observe that (3.29) differs from 
the equation for r derived previously (3.16) by the presence of the term r(Pc/ec) (2 + E ) .  
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The coefficients B and D have been determined in part to match the slow evolution of r 
in the heated grid flows, and we may usefully adopt a similar approach here. The evolu- 
tion of r in the Alexopoulos & Keffer ( 1  97 1) flow was quite slow (T varied by about 5 % 
over the entire flow which amounted to a turbulence decay interval of Ar = 0.53), and 
it appears reasonable to presume that the evolution of r will be slow in most flows of the 
type considered here. We see from equation (3.29) that we may ensure that R will 
evolve at  an appropriately slow rate if E is given a value approximately equal to - 2.0. 
In addition, we may consider the asymptotic behaviour of r .  Here, however, we have 
only the values of r for the cases of one-dimensional turbulence and of final-period 
turbulence to guide us. We see from (3.29) that these two limiting values will be pre- 
dicted by our scalar model if we specify E = - 2.0. Since we lack further information, 
we shall adopt the value - 2.0 for E which differs by less than 2-5 yo (which is within 
the accuracy of the data) from the value determined by a least-squares fit to the exist- 
ing data. We note that with this value for E equation (3.29) becomes identical to 
equation (3.16) so that the asymptotic behaviour of r will mimic the equilibrium 
behaviour of r modelled for the case of homogeneous scalar turbulence without mean 
scalar gradients. In figures 4 and 5 we compare the development of 2 and VC (the cross- 
stream heat flux) predicted by our model (using E = - 2-0 and G = 6.6) with the 
measured behaviour from the experiment of Alexopoulos & Keffer (1971). In  figure 4, 
we also present for completeness the least-squares-fit prediction curve of $, obtained 
with E = - 1.955 (the associated curve for E is not presented in figure 5 since it differs 
negligibly from the prediction curve shown). The agreement between experimental and 
predicted values is within 2 % for both figures. In addition, we display in figure 2 the 
simulated and measured decay of G/U2 which pertains to this experimental flow. 
Agreement is again seen to be satisfactorily close to the measured values. 
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